
My First Dive Into Quantum Computing

Motivation
A Quantum Computer is a machine that utilizes quantum mechanical properties
to store and process information. For the past 4 months, I have taken the
first steps on my journey to understanding these machines. In this essay, I will
articulate the results of my research on a few interesting things I came across
the problems quantum computing aims to address, one of the first theoretical
applications, the current state-of-the-art technology within the field, a case
study that theoretically shows an exponential speed-up in machine learning
classification using a quantum computer, and my personal next steps to learning
more about the subject.

Why Quantum?

Randomness

A common problem in classical (digital) computing is modeling of randomness,
since a true random process by definition can not be predicted. That is, no
efficient algorithm should be able to predict the output given access to the input
and details about the producing system. Classical computers’ greatest strength
is actually their greatest weakness when it comes to randomness. The strength I
am referring to is the high level of precision to which the machine does exactly
what is asked of it. This deterministic behavior is really great most of the time
because it allows us to simulate closed systems and problems without having to
correct against errors or noise. Many of the technological developments that have
been made in recent decades would not have been possible without this strict
and unwavering obediance to instructions that our classical machines possess.

Yet, there exists many applications in which randomness is useful. These
applications range from random number generation for lotteries, cryptographic
keys, modeling of noise, and modeling of quantum systems.

Simulation

Since Planck’s observation of energy absorption and radiation patterns in black-
body radiation that could only be explained by quantum mechanics[3], much of
the global scientific community has adopted the understanding that the universe
we inhabit and the matter it contains can be described most accurately through a
quantum mechanical lens. Therefore, an accurate model can not be constructed
using only the theories and laws of classical mechanics.
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Since quantum computing architectures are build upon and exploit the phe-
nomena explained by quantum mechanics, it is evident that they will be much
more effective at modeling a quantum world than their classical counterparts.
This modeling, if done correctly, has the potential to vastly increase our under-
standing of the world around us and can lead to a host of new technological
developments and discoveries just as the introduction of classical machines did.

Need for Speed

There are very few problems that can not be solved using a classical computer,
and this is amazing! Well at least it would be amazing if we lived forever. . . This
is because even though most problems can be solved on a classical machine, they
can not all be solved efficiently. If a problem takes 300 years of execution on
society’s most powerful classical computer to solve, would we really be inclined
to say the solution is useful? It is unlikely that the person who initially deployed
the algorithm would still be alive to see the answer 300 years later. For this
reason, the computational complexity, or efficiency, is much more relevant to
Computer Scientists than a binary measure of ‘computable’ or ‘not computable’.

The promise that seems to be provided by quantum computers is that of an
exponential speed-up for some types of problems.[4][5][6] Although the reason
behind the speed-up varies between algorithms, it can most often be attributed to
the ability to construct superpositioned states consisting of one or more qubits
to store information. The result of this is that computers utilizing qubits posess
the ability to represent 2n classical bits with n qubits while classical machines
are only capable of storing, (as you might have guessed) n classical bits with n
classical bits.

In 1965, Gordon Moore posited a log-linear relationship between device
complexity and time [7]. The relationship hypothesized that device complexity
(higher circuit density at a reduced cost) would double every two years. This
idea, called Moore’s Law (misleadingly called ‘Law’ as it is more of an empirical
observation) has recently begun to lose faith among followers. Researchers in
the community have recently recognized that we are reaching physical limits
to further minutarization of transistors (devices responsible for providing users
with programmable classical bits, one transistor per bit). Associated rising costs
and reduced return on investment appear to be further slowing the pace of
development [8][9]. Most modern classical integrated circuits contain anywhere
from 10-35 billion transistors, while Sycamore, Google’s state of the art quantum
processor, contains 53 Qubits.
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The Genesis
Modern Quantum Information Theory can be argued to have been kicked off in
1968 by Stephen Wiesner through his invention of conjugate coding [1]. Conjugate
Coding refers to a cryptographic method of information transmission that aims
to maintain message integrity and confidentiality. In the study of Cryptography,
integrity and confidentiality are two necessary(but not sufficient) conditions that
must be satisfied in order to guarantee sound cryptographic security. Integrity
refers to the state of the message and its relationship to the initial state of
the message. A modified or corrupted message is not said to have integrity.
Confidentiality refers to the exclusivity of access to the message, that is, only
the intended recipent is able to extract any sort of information from the message
in a system that ensures confidentiality.

In order to set the scene for Conjugate coding, we must first examine the
Measurement Problem and its implications [2]. The measurement problem
refers to the effect of observation on a quantum system. While a quantum system
can be in a Superposition of multiple possible eigenstates (or physical states)
at once, the moment an observation on that system takes place, the system
collapses onto a single eigenstate and a singular physical state is embodied by
the system. When we talk about superposition, the concept we are referring
to can be most easily understood by doing away with the intuitive notion of
an object being “here” or “there” and instead adopting a probabilistic view of
the state. Under this view, we would say that an object can have for example
a 50% probability of being “here” and a 50% probabilitiy of being “there”. A
system in superposition is not said to have a definitive desciption but instead a
probabilistic description, nothing more. With this, we can begin to understand
one way quantum computers can prove advantageous over their counterparts. In a
classical machine, with one bit we have to ultimately define it as either 1 or 0, but
with a quantum machine, we can define a qubit to be in a Superposition with
some probability of being 1 and some probability of being 0. The containment
of these two seperate probabilities in a single qubit demonstrates the ability to
represent 2n bits for each qubit, a feat fundamentally impossible with classical
computers.

When using Conjugate Coding, a sender who we can call Alice, takes her
classical message and encodes it in photons polarized in conjugate basis. This
polarization, is responsible for each bit of her message into a superposition. Since
photons are the quantum manifestation of electromagnetic radiation, as photons
are sent across the wire, they propogate along with two orthogonal wave-like
features. These features are the magnetic field component and the electric
field component. Upon recieving the message, the recipient, who we will call
Bob, passes the photons through a polarizing beam splitter randomly choosing
conjugate basis of measurement for each bit. Depending on the basis used, each
state has a certain probability of being measured. If Alice and Bob chose the same
basis, they are guaranteed to measure the same state with P = (1.0), but if they
choose different basis, they can not assume to have the same state for that piece
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of information. More precisely, they will measure the same state with P = (.50).
Since they know this, Alice and Bob can publicly share the basis that they chose
and discard from their message block the units of information for which they
used different basis. If after pruning their message block in this manner they
share the same piece of information, (which they can easily determine by using
the message as a symmetric crypographic key and communicating with the key)
then Alice and Bob can be confident that their message was not tampered with
or measured by any eavesdropper, since an eavesdropper would have to correctly
guess each basis that Alice used in order to perfectly recreate the message before
sending it to Bob. As the units of information transmitted, denoted by N , grows,
the probability that an eavesdropper will correctly guess each basis decreases
exponentially. This decrease is represented by the following probability density
function, where n represents the length of the message:

f(n) = (.50n)

Conjugate coding was just the tip of the iceberg, but it gave us a glimpse
into a world where quantum computing can provide new ways of securing our
communications, something especially important in the so-called Information
Age we happen to find ourselves in.

Where Are We Now?
The current state of the field has matured quite a bit since Weisner’s Conjugate
Coding invention. This year alone has resulted in a number of incredibly
interesting discoveries including:

1. Creation of artificial atoms in silicon quantum dots that contain a higher
number of electrons resulting in greater stability for qubits than previously
thought possible. [10][11]

2. Presentation of an eight-user city-scale quantum communication network,
located in Bristol, using already deployed fibres without active switching
or trusted nodes. [12][13]

3. Demonstration of a photonic based Quantum Computer which can perform
Gaussian BosonSampling at a rate that is 1014 times faster than state-of-
the-art quantum simulation using classical supercomputers. [14]

Although progress is speeding along, we are still very much in the NISQ era
of quantum computing. A term coined by John Preskill in his 2018 paper[15],
NISQ stands for Noisy-Intermediate State Quantum and is meant to illustrate
one of the most important aspects of this era, noise. While quantum circuits
are beginning to show promising results on certain subsets of computational
problems, results become increasingly unreliable as the depth of the circuit
(number of operations on a superpositioned system since the last measurement)
grows.
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Since quantum machines utilize quantum mechanical phenomena such as
interference between quantum systems, they are unavoidably affected by other
quantum bodies outside the machine. This external interference results in
noise and decoherence, that is, the gradual entanglement of the qubit with its
environment, and thus lack of preservation of the qubits programmed state. One
way to try to address this problem of decoherence is to completely close off the
system from outside interference, but one would quickly realize that with a closed
quantum system, there would be no way to measure or manipulate the qubits
leaving us with a computational machine that we can’t perform computations
on.

In an era of perfectly error-corrected qubits, capacity of quantum processors
may begin to follow a rate of growth similar to that of their classical analogues,
unfortunately, we are not in that era yet. For this reason, much of the current
research is centered around error and noise correction, with machine learning
showing lots of promise for correcting these errors.[16][17][18]

Looking Ahead
In spite of the engineering hurdles that lie ahead, there is still a fair amount
of optimism in the field for the future of this technology. With the pressure
of the impending possible end to Moore’s Law, and the doors that quantum
computing can open, it is no wonder that so much research is being done into
creating quantum machines that not only have higher numbers of qubits, but
also have lower error and decoherence rates.

IBM Quantum has recently published a hardware roadmap that outlines their
own goals towards the creation of machines with higher numbers of qubits and
lower error rates. Interestingly enough, the relationship between chip complexity
and time is roughly the same as Moore’s Law. Figure 1 shows the image from
their blog post introducing the roadmap.[19]

These are certainly ambitious goals considering the fact that the community
has not yet not found a cost-efficient and scalable method to implement complete
error-correction, but even if we can’t create a fully-scalable quantum machine,
there is quite a bit that we can learn from trying.

Quantum-Inspiration

An important part of research that goes into this field is not just the creation of
novel quantum algorithms, but something called dequantization. Dequantization
of computational problems refers to the demonstration of a contradiction to
a claim of quantum supremacy (a quantum computer performing a problem
more efficiently or accurately than a classical computer). This is usually done
by exploring new classical algorithms for the problem, or creating classical
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Figure 1: Image from IBM Quantum’s storyTK

algorithms that are inspired by their quantum counterpart with higher efficiency
than the proposed quantum method. Chia et al. and Tang et al. demonstrated
this method in their recent papers[20][21].

In the subset of the multiverse (a discussion for another day) that we never
arrive at a period of scalable noise-corrected qubits, there is still benefit to
be reaped by the creation of quantum-based algorithms. Although simulating
a quantum machine generally requires an allocation of memory that scales
exponentially, there has been recent research into ways to maximize efficiency
of current classical hardware so that it performs optimally when executing
a quantum algorithm.[22] Work like this will greatly increase accessibility to
simulating quantum machines and enable the use of quantum algorithms without
a quantum machine.

Case Study
I will now explore a specific quantum machine learning algorithm and show
how it is possible to acheive an exponential speed-up in unsupervised data
classification. Before I jump into how this speed-up is possible, I will briefly
cover a few important building blocks used by the algorithm. More in depth
resources can be found in these references.[24][25]
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Dirac Notation and Qubit Representation

Dirac or Bra-Ket notation is the mathematical notation we utilize to think about
and work with qubits.[23] Since qubits and quantum systems in general can
exist in a superposition of values before measurement, it is useful to not be
limited by a single scalar value to represent the state of the qubit (as would be
done in classical computing) but instead a vector representing the probability
amplitudes for the system existing in each possible state.

1 = |1〉 =
(

0
1

)

0 = |0〉 =
(

1
0

)
In the above equations, we begin on the left-hand side with the classical

representation of bits. The middle values are Kets, which can be thought of as
column vectors that each represent 1 and 0 respectively. On the right side of the
equation is the vector containing the probability amplitudes for each possible
state.

Unlike statistical probabilities, probability amplitudes can be negative. Sta-
tistical probability for observing a given state can be derived from probability
amplitudes using:

P = |amplitude|2

These probability amplitudes are often times complex numbers. It is impor-
tant to note that within literature, a set of probability amplitudes that describe a
quantum state are conventionally normalized so that the corresponding statistical
probabilities add up to 1. That is:

|a0|2 + |a1|2 + ...+ |an−1|2 = 1

In general, quantum states can be expressed as:

|Ψ〉 =
∑N−1

i=0 ai|i〉

Quantum Gates

In order to manipulate our qubits, we need to introduce some logical gates
similar to those that exist in our classical computing models. These quantum
gates come in the form of unitary matrices. An important thing to note about
quantum gates that makes them different from classical gates is that they are
all reversible. The reason for this is that the conjugate transpose of a unitary
matrix is its inverse, and since the inverse of all unitary matrices exist, we can
be guaranteed reversibility in gates when using unitary matrices. While there
are many other gates, I will only be covering those that are necessary for the
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algorithm.

Hadamard Gate

One of the most useful gates in circuit-based models of quantum computing is
the Hadamard gate. It is used for putting a qubit into an equal superposition
of |0〉 and |1〉.

H = 1√
2

(
1 1
1 −1

)
In circuit gate diagramatics it is represented by:

Fredkin Gate

The Fredkin Gate is a controlled swap operation performed on 3 qubits. In other
words, The Fredkin gate takes one control qubit and two input qubits, if the
control qubit is equal to 1, then the two input qubits are swapped.

Fredkin =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1


In circuit gate diagramatics it is represented by:

8



Amplitude Encoding

Amplitude Encoding refers to the encoding of classical information into the
probability amplitudes present in quantum systems.[29] Given a real-valued
vector, u, Amplitude Encoding converts this classical vector into a quantum
state;

|Ψ〉 = 1
M

∑N−1
i=0 ui|i〉

In the above equation,M represents the norm of the vector u, which can be
given by:

M =
∑N−1

i=0
√
u2

i

K-means

K-means is an unsupervised learning algorithm that clusters n observations into
K groups for the purpose of data classification without labelling. This algorithm
was first proposed by James MacQueen in 1967.[29] The procedure is as follows:

1. Initialize K centroids randomly
2. While centroids continue to change:

a. Classificiations on all observations are made such that the standard
squared error is minimized. In other words, observations are classified
into the groups with the closest centroids.

b. Centroids are re-calculated by taking the arithmetic mean of each
cluster.

The time complexity of this algorithm is dependent on the values corre-
sponding to the number of features in the input vectors N , the number of input
vectors M , and the number of clusters K:

O(MNK)

Quantum K-means

The Quantum analogue of the classical K-means can be shown to provide an
exponential speed-up with respect to the number of features in the input vectors
(N). This is made possible through the use of Amplitude Encoding since logN
qubits have the capacity to store N -dimensional input vectors. The quantum
K-means that I will discuss was proposed by Kopcyzk in his 2018 paper. [30]

One of the most important steps in this algorithm is the SwapTest, which
was first used by Ameur, Brassard, et al. in their 2006 paper. [31] The SwapTest
measures the similarity between two quantum states using Hadamard and Fredkin
gates. A diagramtic representation can be found below.
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Given two unknown quantum states φ and ψ one can measure the similarity
or overlap 〈φ|ψ〉 by observing the measurement probability of the control qubit
in state |0〉 which is given by:

P (|0〉) = 1
2 + 1

2 |〈φ|ψ〉

Both φ and ψ consist of n qubits each and are loaded with classical data using
Amplitude Encoding. The resulting overlap, 〈φ|ψ〉, is observed by measuring the
ancillary qubit, preserving the states of φ and ψ.

The general algorithm of the quantum euclidean distance calculation for
K-means is as follows:

1. Perform Amplitude Encoding to store our classical vectors a, b into the
qubits we want to compare:

|ψ〉 = 1√
2 (|0, a〉) + |1, b〉)

|φ〉 = 1√
M

(|a||0〉) + |b||1〉)

where M = |a|2 + |b|2

2. Quantify overlap or similarity between the states using the SwapTest as
〈ψ|φ〉

3. Calculate the euclidean distance between the classical vectors using the
overlap.

Distance = 2M |〈ψ|φ〉|2

After calculating distances, the closest centroid is found using Grovers
Optimization[32] and the observation is classified. Just like in the classical
version, there still needs to be recomputation of centroids and the algorithm
continues to reiterate the routines of distance calculation, classification, and
centroid redefinition until centroid locations cease to change.

Through this example of quantum distance estimation for k-means, it is
shown that it is possible to acheive an exponential speed up in efficiency as the
number of features for the vectors grows due to Amplitude Encoding. While
the classical algorithm acheives a time complexity of O(NMK), the quantum
analogue has a complexity of O(log2(N)MK). A lengthier discussion can be
found in Khan’s Quantum K-means Algorithm Paper[33].
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My Next Steps
These past few months have made me more enthusiastic about pursuing scientific
investigation than any other time in my life. At a conference I was at a
few weeks ago, the QCWare Q2B Conference, a speaker mentioned that the
quantum computing space today feels like what the classical computing space
felt like during 1950-1960 period. Having studied the progress that classical
machines have made, the thought of getting to be involved in a new technological
revolution that is at all comparable to the revolution ushered in by classical
computing is beyond exciting. This winter break and over the course of this
next semester I plan to embark on two new endeavors to cultivate my knowledge
and understanding of quantum computing.

Quantum Computing Collective

The first endeavor is that of founding an undergraduate student organization that
provides a shared learning space where students can come learn from, teach, and
research with other undergraduates who are interested in quantum computing.
This community, which is officially launching Spring 2021, is called the Quantum
Computing Collective and is already 51 members strong! In this community we
will provide various ways to engage with the literature together, teach eachother
how to build quantum circuits using IBM’s Qiskit, pursue research in teams with
the goal of publication, and host career development events where undergraduates
can meet with representatives from Quantum Computing firms and Quantum
Computing graduate programs!

Quantum-Classical Financial Volatility Classifier

The second endeavor is a research project that I have begun implementing
which will utilize the Quantum K-means algorithm that I presented above to
build a quantum-classical financial volatility classification framework. In this
research, I will create and compare classical and quantum volatility classification
frameworks. The overarching design of the framework is as follows:

1. Data from two categories (market-data and financial news articles) are
sourced and pre-processed.

2. Data from the news article category is used to derive a sentiment. This
consists of two main parts:
1. An organizational identifier is used to identify entities and words

related to companies in the S&P 500.
2. Using finBERT, an open source instance of Google’s state-of-the-art

Deep Learning Natural Language Processing model that is pre-trained
on financial data, a sentiment is derived and attached to the entity
that was identified and associated with the given time step based on
the article timestamp.
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3. Data is then transformed into its principal components using Principal
Component Analysis for the purpose of reducing the dimensionality of the
dataset.

4. Finally, a k-means classifier takes the principal components and classifies
the data into k groups.

5. The classification of these environments will allow me to analyze whether
or not there exists correlation between group membership and volatility
conducivity.**

The first model will be exactly as I described the framework, while the
second model will include quantum sub-routines. In step 3, classical PCA will
be replaced by Quantum PCA [34], while in step 4, the classical k-means will be
replaced with the quantum k-means.

After creating these models, I will perform a 4 year back-test to compare
predictive ability and efficiency between the models with the goal of either
rejecting or accepting the hypothesis that a quantum volatility model following
the above framework can acheive higher accuracy than a classical implementation.

** An important assumption here is that I believe the volatility of today’s
stock market affects the volatility of tomorrow’s stock market. Evidence for this
can be seen in non-stationarity of financial time-series data and correlation of
realized volatility between consecutive time steps, quantifiable through the use
of augmented dickey-fuller tests.
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